Geodesics Geometry

Joseph D. Clinton

Introduction

- Inverse Gnomonic Projection (Jena Planetarium)
- Fuller's Methods
- Kitrick's Algorithms
- Other Techniques

Inverse Gnomonic Projection

- The "horologium" (Gnomonic) projection was used in early times for constructing star maps of the heavens.

- Projection of a point on a spherical
 surface to a plane tangent to the sphere along a line passing through the point and the spheres center.

- An inverse gnomonic Projection was used

Jena Planetarium 1922

- "One starts with the fimiliar regular solid whose surface consists of 20 equilateral triangles..."

Jena Planetarium 1922

- "... and makes a straight cut across each of the 12 vertices which this solid possesses, then 20 hexagons and 12 pentagons are formed on the surface..."

Jena Planetarium 1922

- ".. With the cuts in the right places, it is easy to ensure that the circles circumscribing the pentagons and hexagons are equal..."

- "... If one imagines the edges of this solid projected out from the center onto a spherical surface with the same center, then the division of the sphere as described is formed."

Jena Planetarium 1922

- Equal edge subdivision and triangulation of the hex/pent planes was done.
- The grid was transferred to the spherical surface using inverse gnomonic projection (Walter Bauersfeld - 1922)

Jena Planetarium 1922

Gnomonic Projection

- The gnomonic projection method has become the most popular method among the general users interested in Geodesic domes.
- NASA documents Clinton - 1960's
- Dome Books popularized this method 1970-71
- geodesic math book Hugh Kenner 1976
- finding chord factors of geodesic domes Fred Blaisdell, Art Indelicato
- Spherical Models Magnus Wenninger
- GEODO software
- WinDome 48 software
- CADREY software
- GEODESIC software
- TekCAD software
- Forman software

Fuller's Methods

- "A problem proposed and solved by Schwarz in 1873: to find all spherical triangles which lead, by repeated reflection in their sides, to a set of congruent triangles covering the sphere a finite number of times."
- There are only 44 kinds of Schwarz triangles.

Fuller's Methods

- Fuller's studies of the thirtyone great circles became the topological basis for his subdivision of the icosahedron into smaller cells that would describe his geodesic domes.
- The basic unit of the 31 great circle intersections is a Schwarz triangle of $\mathbf{1 / 1 2 0}{ }^{\text {th }}$ of the sphere

Fuller's Methods

- He further subdivided the basic unit of the 31 Great Circles into 4 right triangles.
- He used spherical trigonometry for his calculations.

Fuller's Methods

- These triangles gave him the coordinates for constructing the three-way triangular grid of his geodesic polyhedra.

Fuller's Methods

- The original three-way, shown on the right had an irregular pattern
- It was modified and became known at the "Regular" triangulated grid.

Fuller's Methods

- Several other methods of generating three-way triangulated grids were developed and named:

The Regular

The Alternate Truncatable

Kitrick's Algorithms

- Source: Kitrick, Christopher J, "A Unified Approach to Class I, II, \& III Geodesic Domes", IJSS, V 5, N 3\&5, 1990 p 223246
- Kitrick's mathematical approach will be described.
- It includes the gnomonic projection, Fuller's geometries and several other geodesic geometries

Kitrick's Algorithms

Methodology

- All concepts presented are applicable to the Schwarz triangles (LCD's) of the Icosahedron, Octahedron and Tetrahedron.
- It includes all classes and frequencies (b,c pairs).

- The basic approach involves the modular subdivision of the LCD triangle into a rectangular grid.

Kitrick's Algorithms

Methodology

- The approach uses a modular subdivision of the Schwarz triangle into a rectangular grid.
- The number of divisions along the PPT edge is referred to as the grid frequency (f)

- For every (b,c) pair there is a corresponding frequency.

Note: The grid frequency is not the same as the geodesic polyhedron frequency

Kitrick's Algorithms

Methodology

- For the Class I tessellation frequency equals $b / 2$ and each triangle is two cells wide and three high.

Kitrick's Algorithms

Methodology

- For the Class II tessellation frequency equals b and each triangle is one cells wide and two high.

Kitrick's Algorithms

Methodology

- The Class III tessellation is more complex. It involves a skew angle to the grid.
- A set of offsets are applied to determine the correct frequency for the (b,c) pairs.

Kitrick's Algorithms

Methodology

- $d \quad=S\left(b^{2}+c^{2} / 4+b c+3 / 4 c^{2}\right)$
- $\cos B=(b / 2+c) / d$
- $\cos C=(c / 2+b) / d$
- $\sin B=(S 3 b) /(2 d)$
- $\sin C=(S 3 c) /(2 d)$
- $d x=\cos C-\cos B$
- $d y=S 3 / 3 d x$

Kitrick's Algorithms

Methodology

- m, $=\cos C(b-c) / d x$ - Note: $b>c$
- $n^{\prime} \quad=(\sin B+\sin C)(b-c) / d y$
- Note: $\boldsymbol{b}>\boldsymbol{c}$
- $m \quad=m$ '/greatest common multiple (m ', n^{\prime})
- $n=n$ '/greatest common multiple (m^{\prime}, n^{\prime})
- $m=\cos C / m$

2,1

- $j \quad=S 3 / 3 m$

Kitrick's Algorithms

Methodology

- $m_{b}=\cos B / m$
- $m_{c} \quad=\cos C / m$
- $n b=\sin B / j$
- $n_{c}=\sin C / j$
- $f=\left(b m_{c}+c m_{b} / 2\right)=d(2 m)$

2,1

Kitrick's Algorithms

Methodology

- All grid intersections are defined by a coordinate pair given as (i, j) where:
- $\boldsymbol{i}+\boldsymbol{j}<\boldsymbol{f}$
- Any given geometrical method is a unique one-toone mapping of (\mathbf{i}, \mathbf{j}) pairs to ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) coordinates.

Kitrick's Algorithms

Mapping

- Many geometrical solutions have been found for triangulated spherical tessellations.
- Three solutions will be presented here:
- Method - radial
- Method - cb
- Method - bb

Kitrick's Algorithms

Mapping

- The spherical methods use the spherical form of the LCD's using the following notations:
- a - opposite arc side
-b - adjacent arc side
-c - hypotenuse arc side
- A - angle opposite arc side a
- \boldsymbol{B} - angle opposite arc side b
- (i, j) - integer coordinate of a point on the $L C D$ grid
- f - frequency of grid
- $\left(x^{0}, y^{0}\right)_{\text {axis }}$ - angular equilivalent

Kitrick's Algorithms

Mapping

- The radial method
- The $L C D$ triangle is divided by f in its planer form and each intersection (i, j) is projected radially until it reaches the sphere surface
- Take the ($x^{\prime}, y^{\prime}, z^{\prime}$) position on the plane and divide each of its components by the radius of the sphere to find the projected (x, y, z) coordinates on the sphere surface

Kitrick's Algorithms

Mapping

- Method - cb
- Side c is subdivided by f

$$
\text { into } \Delta c \text { arc segments }
$$

$$
\begin{array}{ll}
\Delta c & =c / f \\
y^{0} & =\arcsin (\sin (j \Delta c) \sin A) \\
x^{0} & =b-\arctan (\tan (\Delta c(f-i)) \cos A) \\
\text { Axis } & =x
\end{array}
$$

- From side c perpendicular arcs are dropped at each Δc interval to be perpendicular with side b
- All grid intersections lie on these arcs perpendicular to side b

Kitrick's Algorithms

Mapping

- Method - bb
- Side b is subdivided by f into Δb arc segments

$$
\begin{array}{ll}
\Delta b & =b / f \\
x^{0} & =i \Delta b \\
y^{0} & =\arctan (\sin (\Delta a) \tan A) \\
\text { Axis } & =x
\end{array}
$$

- At each Δb distance a perpendicular arc c is projected until it intersects side c
- All grid intersections lie on these arcs

Other Methods

- Kitrick included in his paper nine different geometrical methods for tessellating the sphere into a triangular grid.
- Bauersfeld, Fuller, Goldberg, Ginzburg, Stuart, Richter, Kirschenbaum, Clinton, Tarnai \& Makai, Edmondson, Pavlov, Rebielak, Huybers, Trump, Fowler \& Manolopolos, Shea, and others have contributed to enlarging the inventory of methods
- New methods are appearing at an accelerated rate coming from many divers fields.

