* Регистрация    * Вход
Проектирование | Теория и концепции | Объекты участников
Практические вопросы | Предпринимательство | Проекты сообщества



Гипертрофированный коннектор
#1   19.10.2012 — 05:20
Аватара пользователя
Что если сделать огромный коннектор из фанеры в виде чаши.
Главное чтобы развёртка умещалась в лист фанеры (1525х1525мм).
По виду получается икосаэдр, а по сборке додекаэдр.

Хотя с коннекторами: это я погорячился. Надо было в бесконнекторные соединения писать... :(

12_3.JPG
12_3.JPG [ 477.21 Кб | Просмотров: 4836 ]
12_2.JPG
12_2.JPG [ 501.14 Кб | Просмотров: 4836 ]
12_1.JPG
12_1.JPG [ 489.31 Кб | Просмотров: 4836 ]
12_0.JPG
12_0.JPG [ 496.06 Кб | Просмотров: 4836 ]
_________________
...ибо всё сансара сансар и всяческая сансара...
Ответить с цитатой
Re: Гипертрофированный коннектор
#2   19.10.2012 — 15:19
Аватара пользователя
Taymir76 писал(а):
Что если сделать огромный коннектор из фанеры в виде чаши.
Главное чтобы развёртка умещалась в лист фанеры (1525х1525мм).
По виду получается икосаэдр, а по сборке додекаэдр.

Хотя с коннекторами: это я погорячился. Надо было в бесконнекторные соединения писать... :(
Чёт не понятно как же оно крепится?
_________________
http://kupolok.com
Ответить с цитатой
Re: Гипертрофированный коннектор
#3   19.10.2012 — 22:03
Аватара пользователя
Полагаю так:
Сначала отдельно собираются пяти- и шестиугольные чаши, а затем чаши скрепляются между собой.

Ход моих мыслей был простой:
С коннекторами вечная проблема: то они дорогие, то фиговые.
Вот я и решил сделать коннекторы огромными и простыми (например в виде чаши из фанеры) так как:
Фанерой обшивать в большинстве случаев сферу приходится (проще всего крыть шинглсом).
Форма чаши приближает всю конструкцию по форме к шару.
Дугообразная граница между треугольниками мне представляется крепче прямой линии.

Брусок можно применить и потолще, и пошире. А блины сделать ещё больше: всё равно между ними и фанерой будет утеплитель.
Крепёж: саморезы или болто-шайбо-гайки.

ч1.JPG
ч1.JPG [ 1.05 Мб | Просмотров: 4783 ]
_________________
...ибо всё сансара сансар и всяческая сансара...
Ответить с цитатой
Re: Гипертрофированный коннектор
#4   20.10.2012 — 03:28
Аватара пользователя
из бумаги интересно, получиться ?
Ответить с цитатой
Re: Гипертрофированный коннектор
#5   20.10.2012 — 04:24
Аватара пользователя
Фанеру можно усилить тонким листовым металлом!
Ответить с цитатой
Re: Гипертрофированный коннектор
#6   20.10.2012 — 07:20
Аватара пользователя
Из бумаги сделать можно, только лень.
Тонколистовой сталью усилить -это тема, но шинглс воде как на железо не рекомендуют класть (плавится что-ли...)

Вот ещё рендеров подброшу, а то вчера что-то ящик глючил (не хотел картинки в сообщение вставлять)

Узел изнутри

ч5.JPG
ч5.JPG [ 155.41 Кб | Просмотров: 4757 ]
узел снаружи

ч4.JPG
ч4.JPG [ 90.47 Кб | Просмотров: 4757 ]
то, что видит манекен

ч3.JPG
ч3.JPG [ 175.29 Кб | Просмотров: 4757 ]
ч2.JPG
ч2.JPG [ 216.48 Кб | Просмотров: 4757 ]
_________________
...ибо всё сансара сансар и всяческая сансара...
Ответить с цитатой
Re: Гипертрофированный коннектор
#7   22.10.2012 — 10:43
Taymir76 писал(а):
Из бумаги сделать можно, только лень.
А Вы не поленитесь, и сделайте хотя бы одну чашу.
Желательно из гофрированного картона.
В отличии от бумаги он имеет толщину.
Сразу увидите, что нет необходимости в сложных "горбатых" рёбрах.
"Лепестки" чаши сами плотно прижмутся друг к другу...

Гнуть можно только тонкую фанеру 6-7мм толщины.
Причём жёсткость у неё разная вдоль и поперёк волокон.
В результате Ваши чаши скорее всего в основании будут не круглыми, а элипсными.

А самое главное: Как Вы собираетесь соединять чаши между собой?
Как я понял, Вы хотите изнутри скрепить ребра диском, а снаружи прикрепить к каждому ребру основание двух чаш.
Но, ведь это тоже самое, что и при обычном креплении треугольников.
Так стоит ли "городить огород"?

Попробуйте посмотреть такой вариант: Делать обшивку из четырёхугольников.
Изображение
Здесь каждый лист соединяет несколько рёбер, т.е. работает как половинка большого коннектора.
Сначала собираете каркас, используя внутренние диски, а потом обшиваете его снаружи 4угольниками.
Ответить с цитатой
Re: Гипертрофированный коннектор
#8   23.10.2012 — 04:15
Аватара пользователя
Отличный вариант!
Однако мне пришла на ум такая конструкция:
Три концентрические сферы из 6мм фанеры.
Все сферы состоят из чаш, но узлы (где сходятся монолитно вершины треугольников) в каждой сфере меняют своё местоположение, чем достигается перевязка (как в кирпичной кладке).
Бруски упраздняются вовсе, вместо них дистанционные бобышки между сферами, скажем по одной на вершину и по одной на середину ребра.
Конструкция представляется мне небывало прочной и восхитительно простой в сборке и изготовлении :)

P.S. Жаль работы много, нет времени отрисовать в 3д. Хотя уже сейчас предвижу неприятные коллизии вокруг пятиугольников :(
_________________
...ибо всё сансара сансар и всяческая сансара...
Ответить с цитатой
Re: Гипертрофированный коннектор
#9   23.10.2012 — 08:08
Taymir76 писал(а):
Бруски упраздняются вовсе,
Я думаю, что от брусков уйти не удастся.
Как Вы будете соединять между собой основания Ваших чаш?
Чтобы оболочка нормально работала, листы должны быть собраны встык по всей длине.
Значит нужны какие то подкладки между листами.
Достаточно толстые и прочные, чтобы в них закрепить саморезы или винты.
Taymir76 писал(а):
Конструкция представляется мне небывало прочной и восхитительно простой в сборке и изготовлении :)
На мой взгляд, простоты изготовления здесь нет.
Зачем делать в листе 5 или 6 пропилов, если достаточно одного?

Сделайте развёртку пятиугольника, и наложите его на лист.
Сразу увидите, насколько проще вырезать один прямой угловой сектор, чем вырезать пять секторов с ломаным профилем.

Делать три сферы - наверное лишнее.
Лучше просто усильте узлы где соединяются 3 чаши накладками из толстой фанеры.
Крепить их желательно на винтах.
Ответить с цитатой
Re: Гипертрофированный коннектор
#10   24.12.2015 — 13:25
Аватара пользователя
Вот ещё способ изгалятельства над фанерой...

фанера 1.png
фанера 1.png [ 27.23 Кб | Просмотров: 2728 ]
0000.png
0000.png [ 50.29 Кб | Просмотров: 2728 ]
Ответить с цитатой